LIST OF TABLES

Ν	lumber	Page
I.	Results of the review of 2004 and 2005 technical papers.	152
	. Reported cost and team size of selected team challenge vehicles.	159
II	I. Team reference numbers.	421
IV	V. "Drop dead time".	423
V	Adopted and derived geometric constants for major coordinate systems.	423
	I. Course length.	423
V	II. Average course segment length.	423
	TII. Calculated turn radius and notional diameter using $SSF = 1.02$.	424
Ľ	X. Course segment speed.	425
Х	. Course segments per group.	425
Х	I. Total distance per group.	426
Х	II. Reportable change in bearing.	427
Х	III. 2004 and 2005 GCE course completion times given notional course-wide	
sp	peed limits.	428
Х	IV. Challenge vehicle platform.	429
Х	V. Team vehicles (2004 QID and GCE participants).	430
Х	VI. Team vehicles (2005 GCE participants).	431
Х	VII. Team vehicle closest match (2004 QID and GCE participants).	432
	VIII. Team vehicle closest match (2005 GCE participants).	434
	IX. Typical values for the kinetic coefficient of friction.	436
	X. Turning circle for selected challenge vehicles.	437
	XI. Calculated rollover speed for selected challenge vehicles.	440
	XII. 2004 GCE standard questions.	441
	XIII. 2005 GCE standard questions.	445
	XIV. State sensors in use by 2004 QID and GCE participants.	447
	XV. Environment sensors in use by 2004 QID and GCE participants.	452
	XVI. Navigation sensors in use by 2004 QID and GCE participants.	457
	XVII. Environment sensors in use by 2005 GCE participants.	462
	XVIII. Navigation sensors in use by 2005 GCE participants.	465
	XIX. Known sensors by quantity (2004 QID and GCE participants).	469
	XX. Known sensors by manufacturer (2004 QID and GCE participants).	470
	XXI. Known sensors by manufacturer and model number (2004 QID and GCE	. – .
-	articipants).	471
	XXII. Known sensors by quantity (2005 GCE participants).	472
	XXIII. Known sensors by manufacturer (2005 GCE participants).	473
	XXIV. Known sensors by manufacturer and model number (2005 GCE	
-	articipants).	474
	XXV. Alphabetical list of acronyms in use throughout this technical report.	475
	XXVI. Major obstacle and path detection sensors by type (2004 QID and GCE	170
pa	articipants).	476

XXXVII. Major obstacle and path detection sensors by type (2005 GCE	478	
participants). XXXVIII. High-quality obstacle and path detection sensors (2004 QID and GCE		
participants).	480	
XXXIX. High-quality obstacle and path detection sensors (2005 GCE		
participants).	481 482	
XL. Number of teams using high-quality sensors. XLI. Number of high-quality sensors in use.	482 482	
XLII. Number of high-quality sensors in use by teams which participated in both	102	
the 2004 and 2005 GCE.	483	
XLIII. Number of SICK LMS LIDAR sensors in use by teams which participated in the 2004 and 2005 CCE	107	
in the 2004 and 2005 GCE. XLIV. Navigation sensor integration (2004 QID and GCE participants).	483 484	
XLV. Navigation sensor integration (2005 GCE participants).	485	
XLVI. Navigation sensor integration strategies and Kalman filter usage by teams		
which participated in both the 2004 and 2005 GCE.	486	
XLVII. Navigation sensor integration strategies in use by teams which participated in the 2004 or 2005 GCE.	487	
XLVIII. Kalman filter usage by teams which participated in the 2004 or 2005	107	
GCE.		
XLIX. COTS integration using a Kalman filter by teams which participated in the 2004 or 2005 GCE.	487	
L. Navigation sensor integration strategies in use by teams which participated in	487	
both the 2004 and 2005 GCE.	488	
LI. Kalman filter usage by teams which participated in both the 2004 and 2005		
GCE.	488	
LII. COTS integration using a Kalman filter by teams which participated in both the 2004 and 2005 GCE.	488	
LIII. Stopping distance for selected values of v and μ_k .	489	
LIV. Maximum distance between the path of travel in a constant-radius turn and		
the left- or right-limit of field-of-view of various RADAR systems.	490	
LV. Comparison of stopping distance to maximum obstacle detection range for		
VISION, STEREO, LIDAR, and RADAR sensors (2004 QID and GCE participants).	491	
LVI. Comparison of stopping distance to maximum effective range for VISION,	171	
STEREO, LIDAR, and RADAR sensors (2004 QID and GCE participants).	495	
LVII. Field-of-view limitations for VISION, STEREO, LIDAR, and RADAR	400	
sensors (2004 QID and GCE participants). LVIII. Comparison of stopping distance to maximum obstacle detection range for	499	
VISION, STEREO, LIDAR, and RADAR sensors (2005 GCE participants).	503	
LIX. Comparison of stopping distance to maximum effective range for VISION,		
STEREO, LIDAR, and RADAR sensors (2005 GCE participants).	506	
LX. Field-of-view limitations for VISION, STEREO, LIDAR, and RADAR sensors (2005 GCE participants).	509	
sensors (2005 OCL participants).	509	

LXI. Number of sensors for which stopping distance exceeded maximum obstacle detection range.LXII. Number of sensors for which stopping distance exceeded maximum	513
effective range.	513
LXIII. Number of teams for which stopping distance exceeded the maximum obstacle detection range of sensors in use.	514
LXIV. Number of teams for which stopping distance exceeded the maximum effective range of sensors in use.	514
LXV. Average ratio of stopping distance to range for sensors in use by teams which participated in both the 2004 and 2005 GCE.	515
LXVI. Primary group identity and sponsorship of teams participating in the 2004 QID and GCE.	516
LXVII. Primary group identity and sponsorship of teams participating in the 2005 GCE.	517
LXVIII. Sponsorship of teams which participated in both the 2004 and 2005 GCE. LXIX. Number of preventable failures reported by teams participating in the 2005	518
GCE.	519
LXX. Reported ranges of 2004 challenge vehicles.	520
LXXI. Electrical power generation strategies for teams which participated in the 2004 GCE.	522
LXXII. Electrical power generation strategies for teams which participated in the	022
2005 GCE.	524
LXXIII. Manufacturer index.	527